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We derive the generalized orthogonality relation as a generalization of the 

known relation of Schiff [l, 21 to the case of the nonaxisymmetric deformation 
of an elastic cylinder ; this relation takes place for four variants of the homoge- 

neous boundary conditions at the lateral surfaces of the cylinder. We indicate 
a method of obtaining the exact solution of the problem by using the introduced 

relations in the case of two versions. of mixed boundary conditions at the extre- 
mities. We compute the values of the generalized norming factors. 

1, We write the solution of the differential equations of the eqlasticity theory in 
displacements in the Papkovich-Neuber form ; in the case of cylindrical coordinates 
rrpz we have 

u,=u=4(1-v)B,--, u,=w=4(1-v)B,+ 

u,=u=4(1-v)B~-+~, F = rB, + zB, +- B, (1.1) 

The functions B,, B,, B,, B0 satisfy the differential equations 

2 =$, Br 
AB,--- 

acp 
0 -7=, AB,=O 

A,,+$$-$0, AB,=O (1.2) 

A=$+++++$+& 

We assume that the prescribed stresses (or displacements) at the lateral surfaces of 
the cylinder r = a, r = b (a > b) are represented by double trigonometric series 

in the coordinates cp, z (for the continuous cylinder (b = 0) we set a boundedness 
requirement on the axis). Correspondingly, also the solution is sought in the form of a 
double trigonometric series. We consider the typical terms of such series 

u = u* (r) cos hz cos ncp, v = u* (r) cos hz sin ncp 

w = w* (r) sin AZ cos ncp (4.3) 

for whose determination it is sufficient to take 

B, = $ (4 
2 (1 - Y) cos hz cos ncp, B, = z t:(T)yj cos hz sin nq 

Bz = 0, B, = w (r) - z ;~~)vj 
1 1 

cos hz cos nq (1.4) 

From Eqs. (1.2) we obtain the differential relations for the determination of the functions 
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$, X and o (the primes denote derivatives with respect to r) 

r W’)’ = (n” + 1 + 3L2r2) I# + 2nx, r (r-x’)’ = (n” + 1 + h2r2) x + 241 

r (7-u)‘) = (n 2 f h2r.2) (0 f Y& l(W) + nX1 (1.5) 

The functional coefficients u*, v*, w* in the series for the displacements (1.3), by 
virtue of the expressions (1.1) and (1.4). can be represented in terms of the functions 

$,x,w as: 
u* = 2$ - o’, u* Z 2% $- II_ 0, w* = hw (i-6) r 

In a similar manner we introduce the functional coefficients in the series for the stres- 
ses ; their expressions are 

z,,* = 2Gh. (0’ - $) (1.7) 

In the derivation of the formulas (1.7), for the elimination of Poisson ratio, we have made 

use of the relation, which follows from the third of the equations (1.5) 

V 

(1 - v) r 
[(rq)’ $- nX] = qL - [$ $ h2) @ - (r*)‘r+ nx 

Solving the system (1.5). we obtain the explicit expressions of the functions $,, x and w 

(1.8) 

Here 1, = 1, (h) are the modified Bessel functions, K, = K, (Ar) are Macdonald 
functions ; Ci, Di (i = 1, 2, 3) are arbitrary constants which are determined from 

the conditions on the lateral surfaces of the cylinder for each term of the double trigo- 
nometric series. If the length of the cylinder is 21, then the values of h will be h,= 

mn/Z (m=O, 1, 2, . ..). I n t h e case of a continuous cylinder we have Di = 0. In a 
similar manner we can construct the solution for other combinations of the trigonomet- 
ric functions in the typical terms of the series (1.4). 

2. In order to satisfy the boundary conditions at the ends z = * 1 of the cylinder, 
it is necessary, in general, to solve infinite systems of linear algebraic equations in the 
arbitrary constants. One method for forming such systems consists in the use of the ho- 
mogeneous solutions. In this connection, an essential role can be played by the general- 
ized orthogonality relations, similar to those given by Schiff for the case of the axisym- 
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metric deformation of a cylinder [l] and by Papkovich for the plane problem of the 
theory of elasticity 131. We will prove that the generalized orthogonality relation exists 
also in the case of the general problem on the equilibrium of an elastic cylinder. 

We consider the following homogeneous boundary conditions at the lateral surfaces 

of the cylinder: (1) there are no stresses (or = T,, = TV, = 0), (2) there are no disa 

placements (U = u = w = 0)) (3) there are no normal displacements and shear stres- 

ses (U = T,, = ars = (I), (4) there are no normal stresses and tangential displace- 
ments (or = U= w=o). F rom the formulas (1.6) and (1.7) for r = b and r = ~2, 
respectively, for the cases (l)-(4), we obtain 

w’ : $, $’ = nx’ + Azi3, Px = rx + no (2.1) 

w = 0, x = 0, Co’ = ag (2.2) 

0’ = 0, I$ = 0, r2x’ = q + no (2.3) 

0 = 0, x = 0, + = r$’ + 0’ (2.4) 

Inserting the expressions (1.8) for the functions 9, x and o in each of the conditions 

(2.1) - (2.4). we obtain a system of six linear homogeneous equations relative to the 
constants Ci, Di (for the continuous cylinder there will be three equations) ; these sys- 
terns will have nonzero solutions if the corresponding determinants are equal to zero. 

The transcendental equation obtained as a result of expanding such a determinant, defi- 

nes the proper values of the corresponding homogeneous problem, i, e. the parameters hi. 
Thus, for the continuous cylinder (a = 1, b = 0) we have the following transcen- 

dental equations, corresponding to the cases (1) - (4) : 

[Aa + 3n2h4 + (3n2 - 3 + 2~) n2h2 + n4 (n2 - I)1 In3 (A) - 2 IA* - 

(1 - 2~) n2h2 - 2(1 - v),n2 (n2 - I)] AIn (h) I,’ (A) - [A4 + 2 (n2 + 1 - 

v) h2 + n2 (n2 - i)] av, (a) p (a) + 2 [a2 - 2 (1 - V> (n2 - 
~1 av,f3 (a) = 0 

4 (I - Y) n21n3 (a) -j- (a2 + ~22) ar,2 (a) 1,' (a) - 
4 (1 - y) av, (a) r,f2 (A) - av,'3 (a) = 0 

(A2 + ~22) n21n3 (a) + 4 (1 - V) ay (a) I,’ (a) + 

12 (I - v) a2 - n21 Av, (a) I,‘2 (a) - 4 (1 - Y) a3y (a) 

4 (1 - V) n21n3 (A) + [(3 - 2~) a2 + ~2~1 ?Jn2 (h) I,,' (h) - 
4 (1 - v) hv, (q r,‘z (a) - hq3 (A) = 0 

Equation (2.5) is given also in [4]. 

We prove the following orthogonality relation : 

I=i( Uj*tk* + vj*OK* - s~*w,~*) rdr = 0 (i # 4 
b 

= 

(2.6) 

0 

(2.7) 

(2W 

(2.9) 

Here the quantities u*, u*, w*, T* = T:,,*, 8” = azcp*, cr* = q,*are determined 
by the formulas (1.6). (1.7) ; the subscripts j and k correspond to the proper values 
.Aj2 and hk2. For the proof we insert the expressions (1.6) (1.7) into the integral(2.9) 



270 S.I.Litovchenko and V.K.Prokopov 

and we transform the third term by integration by parts 

a a 
- 

s 
cj*w,“rdr = 2Ghk \ [: Oj + nXj + (r$j - r&jr)‘] o,dr = 

b 

2Ghh {[r(ij-mj’) 0,16’+~~~~Oj+nXi)o,+(,~~‘--(l’j)O,~’r]dr! (2.10) 
tJ 

In the formula (2.10) the term which is not under the integral signs vanishes for any of 

the conditions (2,l) - (2.4), and consequently, the integral (2.9) takes the form 

J = 2Gh,I (2.11) 

I = { [$jQk’ + Oj’$h_ - +- (Xjar + OjXk) - 2 ($j+k + XjXk)] rdr 

Let us consider the expression hr21. We integrate the first term by parts 

hk2 f ~jw~‘?Tir = h,” [$)j’uglba - hk2 j ($jr)‘o,dr (2.12) 
b b 

In the remaining terms and in the integral in the right-hand side of the relation (2.12). 
we eliminate the products hk2$k, &‘Xk, hk2~ir with the aid of the differential equa- 

tions (1.5). After a series of computations we obtain 

a 

[($jr)’ ($g)’ + n2xjxk + ~2 Njr)‘Xk + n% (VKVI -k 

f (ajxk + xj-k) + 2r (+j'$clk_' + xj’xk’) + @j’ [VI’+ 

[$j (kk2r + $) Ok - {nXj + (*jr)'} Wk’ - + aj W9’ - 2r (*j+n’ + xjX,‘)lba 
In order to obtain the result (2.13) it is necessary to perform the integration by parts of 
the following expression : 

($jr)‘(Oh” - Z+j (+ti’r)t - 2Xj (~,;fr)r] dr 

We note that the value of the integrals (2.13) does not change at the transposition of 
the subscripts j and k. We interchange now in (2.13) the subscripts j and k and we 

subtract the obtained expression from (2.13) ; the integrals drop out and the sum of the 

terms outside the integral signs vanish for the homogeneous boundary conditions (2.1)- 
(2,4). Hence it follows that 1 = 0 for j # k. By virtue of (2.11). the desired ottho- 
gonality relation (2.9) is proved. 
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The relation (2.9) allows us to obtain the exact solution of the problem of the equi- 
librium of the cylinder in the case when at the ends z = t I of the cylinder there 

are given either the normal stresses and the tangential displacements (ut, U, V) or the 
shear stresses and the normal displacements (rZr, rzqp, w). 

3. As an example we consider the first version of the end conditions and for the sake 
of simplicity we will assume that they are symmetric with respect to the plane z = 0 

(the antisymmetric case is examined in a similar manner). Expanding the end values 
of the given quantities in series with respect to the angle cp, we obtain 

u (r, cp, + I) = 5 unr (r) cos r*cp, 2, (r, ‘p, f I) = $J u,’ (r) sin rzc0 

n=o ?%=I 

6, (r, cp, + 1) = 2 q,,’ (r) cos *cp (3.1) 
n=o 

Forming the series from the solutions (1.3). whose parameters hj are determined by one 
of the conditions (2.1) - (2.4), we have 

u (r, Cp, Z) = i i Aj,"j,* (r) COS ?Zq COS hjZ 

j=l n=0 

v (r, CP, 2) = i i Aj,vj,* (r) sin ncp cos $2 
j=ln=l 

~,(r, CP, 2) = i 5 Aj,~j,*(r)co~nrp coshjz 

j=1 n=a 
(3.2) 

where Ajn are arbitrary constants, subject to determination from the boundary conditions 
at the ends ; in the given problem the latter have the following form : 

5 Aj,uj,* (r) cos hjZ = 2~: (r) 

j=i 

i Ajnvjn* (r) cos hjZ = v,’ (r) 

j=l 

i AjnGjn* 
(r) cos hjl = 3Zn’ (r) (3.3) 

i=l 

The constants ANTI can be found from Eqs. (3.3), if we make use of the relation (2.9). 
We multiply the first equation of (3.3) by rzlm* (r), the second one by r&* (r), the 
third one by rwb* (r), we add the obtained products and we integrate with respect to 
r from b to a. Then we are left only with the terms for which the subscript j = k by 
virtue of the generalized orthogonality relation, and the desired constants have the form 

Akn = J, cos h,l c 
ii 

(unrfkn* + “,Izei;n* - Tznzwkn*) rdr (3.4) 

where JI, is the value of the integral (2.9) for j = k. 

In order to complete the analysis we obtain the expression of the quantity Jk. From 
the formulas (2.11). (2.13) we have 
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+ fX# Q$ - ~9 f”X, + (l$,f)‘f - 2r*'$, - .Lrx’x,j~ (3.5) 

Removing by 1’Hospital’s rule, the indeterminacy in the expression (3.5) and making 
use of the formula for differentiation with respect to the parameter h of the functions 
9, X7 a and of their derivatives, we obtain, after taking the limit, 

~,_~L($hlrS+,~r)j~lilUlii-(,~~ili~~-I)~~Xi-Oii)-X;~?j- 
k 

~ (1 !_ v) ((~$/~r)’ -i_ nXkPZ + (+srl’ wk’ f- (hk2r” - r3 ‘Pk + -I- 

(ti)k.)r)‘? - $2 + (X,‘r)t - Xh.? + I7, Xj2i,(Oi + vL,,r)’ ‘to,; - z$j - 4*IiXjL 
il 

ft 

t II 
C3.Q b 

For the computation of the expression (3 8) we have made use of Eqs (1.5). We obtain 

COnCrete expressions far the quantities .Jk in the case of the homogeneous boundary con- 

ditions (2. I) - (2.4) at the surfaces of the cylinder if we take i&o account the equalities 
(2.1) - (2.4): we obtain, respectively, 
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